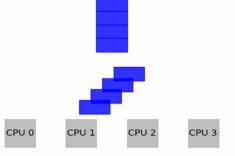


Rust-ifying the Linux kernel scheduler

[...in user space]

Andrea Righi <arighi@nvidia.com>


Agenda

- Scheduling
- sched_ext & BPF
- Linux scheduler in Rust
- Conclusion

Scheduling

What is a scheduler

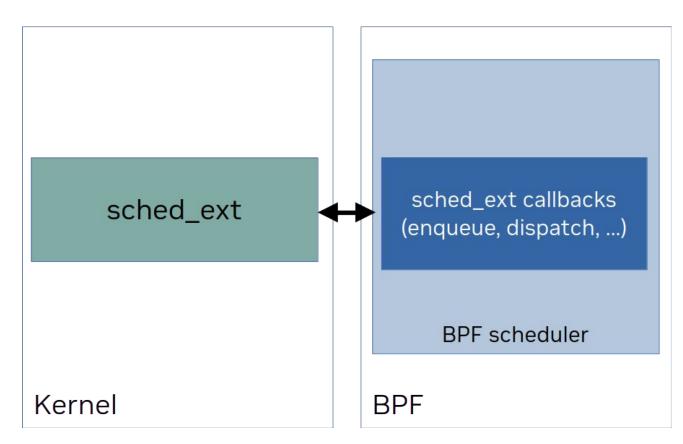
- Kernel component that determines
 - Where each task needs to run
 - When each task needs to run
 - How long each task needs to run

Challenges

- Fairness
 - All tasks should receive a fair share of CPU
- Optimization
 - Make optimal use of system resources
- Low overhead
 - Should run as fast as possible
- Generalization
 - Should work on all architectures and for every workloads

Scheduling in Linux

- One scheduler to rule them all
 - CFS < v6.6
 - EEVDF >= v6.6
- Really difficult to conduct experiments
- Really difficult to upstream changes

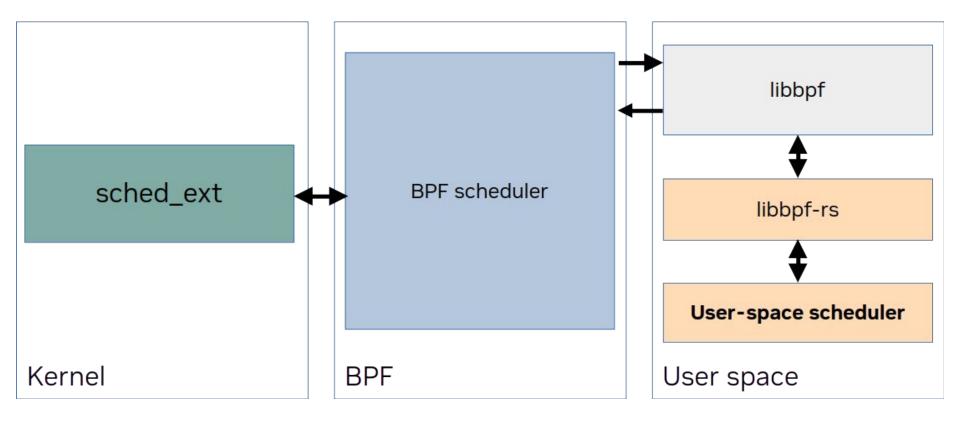

sched_ext & BPF

sched_ext: the extensible scheduling class

- Technology in the Linux kernel that allows to implement scheduling policies as BPF programs (GPLv2)
- Available since Linux v6.12
- Key features:
 - Bespoke scheduling policies
 - Rapid experimentation
 - Safety (can't crash the kernel)

How does sched_ext work?

sched_ext limitations


- Limited programming model (BPF)
- BPF verifier complexity
- Kernel restrictions (no user-space libraries, no floating point, etc.)

Linux scheduler in Rust

Idea

- Use sched_ext + BPF to channel scheduling events to user space and make all the scheduling decisions there
 - A scheduler becomes a regular user-space program
 - Offload complexity to user space
 - Access to user-space libraries and languages

User-space Rust scheduler design

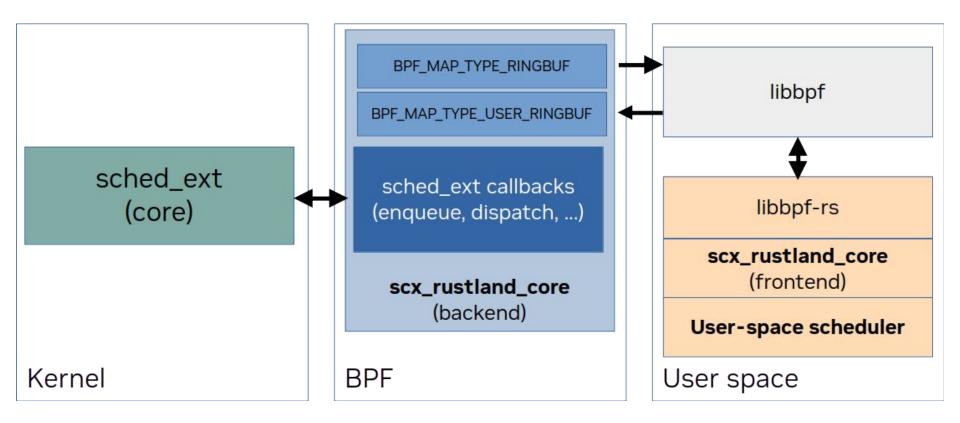
scx_rustland

- EDF-based scheduler
 - Deadline is evaluated as a function of the task's vruntime and the rate of voluntary context switches
- Tasks receive a variable time slice inversely proportional to the total amount of tasks that are waiting to be scheduled

Playing Terraria while building the kernel

EEVDF

scx_rustland


EEVDF vs scx_rustland (https://perfetto.dev)

Generalize user-space Rust scheduling

- Rustland core framework
 - Abstract scx_rustland backend
 - Expose generic scheduling APIs
 - Available as a Rust crate (**scx_rustland_core**)
 - Allow to implement host-wide Linux scheduling policies easily, as regular Rust programs

scx_rustland_core design

FIFO scheduler in scx_rustland_core

```
fn schedule(&mut self) {
 let nr waiting = *self.bpf.nr queued mut();
while let Ok(Some(task)) = self.bpf.dequeue task() {
     let mut dispatched task = DispatchedTask::new(&task);
     let cpu = self.bpf.select cpu(task.pid, task.cpu, 0);
     dispatched task.cpu = if cpu >= 0 { cpu } else { RL CPU ANY };
     dispatched task.slice ns = SLICE NS / (nr waiting + 1);
     self.bpf.dispatch task(&dispatched task).unwrap();
 }
```

```
self.bpf.notify_complete(0);
```

Conclusion

Key takeaways

- scx_rustland is not a better scheduler in general
- Rust itself doesn't make scheduling faster
- Ease of experimentation is the key
 - Fast edit/compile/test turnaround
 - Integration with user-space components (Rust)

References

- Main scx repo
 - <u>https://github.com/sched_ext/scx</u>
- Rust scheduler template
 - <u>https://github.com/arighi/scx_rust_scheduler</u>

Questions?

Andrea Righi <arighi@nvidia.com>

